TTM-214

TTM-210

DIGITAL CONTROLLER

	18ำบํํำ		
	nomers		тm-ats
	$c_{0}^{3} 157 \pi$		$\text { I } 1 \text { EIF! }$
Mas $-3 \rightarrow$ ᄅ $14 \Pi^{-}$			UEigili
Dट 1400 "			
	тоно		
ттм-214	ттМ-215	ттм-217	TM-219

TOHO ELECTRONICS INC.

ตian TTM-210

Features

OControllability is improved with the New PID Algorithm
(1)The time it takes from the control start until it is stabilized has been shortened.
(2)The jump-less control function which controls the occurrence of overshoot after the disturbance has been incorporated.
(3)3-kinds of PID control is selectable.

Full multiple input

With just one unit, it can accommodate different types of input such as thermocouples (13 types), platinum resistance temperature sensor (2 types), voltage (5 types), current (1 type).

OSampling cycle

Speed-up to 200mS has been realized.
A liquid crystal display has been incorporated for the display
(1) The indication range has been extended to 5 -digit display.
(2)Realization of various indications with 11 segment display.
(3)LED is used for the back-light.

PV indication auto-change

The Process value (PV) display condition can be set at Lighting, Flashing (high speed), Flashing (low speed), relative to the set value (SV).

Compact size

The TTM-210 series is made compact with depth of 59.7 mm (for TTM214), 65 mm (for TTM-215, 217, 219). Moreover, the protrusive portion for the panel side attachment is only 2 mm . (TTM-214: 2.5 mm)

Loader communication function

This function is most appropriate for the set-up work of the parameters. Cable: optional (sold separately)
Software: optional (provided free-of-charge downloadable from our website)

Extensive output type

Relay contact, SSR drive, open collector, voltage (5 types) and current

OEnhanced optional function

(1)CT input (max. of 2-points), (2)Event input (max. of 4-points), (3)Event output (max. of 7-points, however, when all 7-points are used, the control output will not be available for use)
External standards
Conforms to CE markings
UL, c-UL markings have been acquired.

- Protection structure (TTM-214 only)

Corresponds to "IP66".

Valve position proportionality control

A function has been incorporated enabling the unit to carry out valve position proportionality control without the feedback resistance.
-Blind function
The system can be configured so that only the specific parameters are displayed from the set of parameters.
OSimplified programmable controlling function
A max. of 8-step program control is possible.
OSimple timer function (3-point stand-alone)
A control of "Control start or stop after a lapse of certain time" is possible with a single unit. An independent use as a timer (event output ON/OFF) is possible.

Priority screen

Indication/Setting is possible without shifting to parameter screen by indicating the necessary parameter screen with operation mode screen. (max. 16 screens)
Digital PV filter
A filter can be applied with software in response to sudden changes of input value.
OManual control
Manual output function will enable the application of various instrumentation systems.
Communication function (RS485: Dedicated protocol / MODBUS)
A communication distance can be extended to a maximum of 500 meters, and up to 31 units can be connected simultaneously.
With one host computer, a centralized monitoring such as "collection of all data", "changes of various setting value" is possible from a distant location.
OSoft-start function
During the PID control mode, in the READY \rightarrow RUN mode (or when the power is turned ON), a limit can be applied for a certain period of time to the operation volume.

Delay timer (available during ON/OFF control only)

During ON/OFF control, the minimum duration time can be set independently for ON \& OFF regardless of the control. This function is useful for any equipment which is not suited for frequent ON/OFF switching, or may be used as protection for the freezing equipment.
Loop error
This function monitors the measured value and operation volume, and detects the abnormality in the control loop.
Bank automatic switching function
This is a function which switches the bank automatically according to the input value (PV, SV). It optimizes the control parameters.

Front Panel

Operation flow

OUT1	Output1 monitor (appears during output)
OUT2	Output2 monitor (appears during output)
OUT3	Output3 monitor (appears during output)
OUT4	Output4 monitor (appears during output)
OUT5	Output5 monitor (appears during output)
OUT6	Output6 monitor (appears during output)
OUT7	Output7 monitor (appears during output)
RDY	RDY lamp (It appears in the state of Ready)
COM	COM lamp (It blinks during communication)
DI1	DI1 monitor (It appears when DI1 operates)
DI2	DI2 monitor (It appears when DI2 operates)
DI3	DI3 monitor (It appears when DI3 operates)
DI4	D14 monitor (It appears when DI4 operates)
TMR	TIMER lamp (It appears when timer operates)
TIME	Appears when the setting is at "Timer".
${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$	It appears when the setting is at "Temperature".
PV	Measured value indication, Character indication, Timer set-up time indication
SV	Set value indication, Operation quantity indication, Timer remaining time indication
MODE	Mode key It is used when changing a screen.
FUNC	Function key It executes functions that are already set.
-	Up key It is used when making a setting value increase It is used when changing input setting mode
∇	Down Key It is used when making a setting value decrease It is used when changing parameter screen

※OUT6 is not available for TTM-217.

Standard specifications

Standard specifications (Continued)

Function	Timer driving mode (TMF)	Three points. 0 min .00 sec to 99 min .59 sec .. Frequency of timer repetition: 0 to 99 times (unlimited times at 0) Accuracy: $\pm(1.5 \%+0.5$ sec.) of the set time. Function: auto-start, manual start, event start, SV start, DI start.		
	Delay timer (FDT)	0 to 99 (min.). Primary/secondary control common.		
	Decimal point shifting (DP)	Indication below decimal point: with/without		
	Manual control	Manual control is possible (balance-less, bump-less)		
	RUN/READY	Switching of RUN/READY is possible		
	Blind function	Any of the parameter screen can be set to non-display mode.		
	Auto-tuning coefficient (ATG)	0.1 to 10.0 (times)		
	Auto-tuning sensitivity (ATC)	Temperature input	0.0 to 999.9 or 0 to $999\left({ }^{\circ} \mathrm{C}\right.$)	
		Analog input	0 to 9999 (digit)	
	Function key	Function key can be selected from "digit shifting", "SEt21 operation type setting \cdots fixed value operation mode: control mode (MD)/control stop (RdY)/ program mode: program start/stop", "AT start/AT stop", "timer start/rest", "screen backward", "ENT", "bank switching", "MD/MANUAL", "SV/MV screen switching", "fixed operation mode/programmed mode switching", "step forward", "pause", "SET22 recall function (SET22 shortcut function)". Press time setting (0 to 5 sec.)		
	Priority screen	Any of the parameter screen can be indicated on the operation mode screen (max. 16-points)		
	Lock function (LOC)	8 modes [OFF, ALL lock, operation mode lock, lock except operation mode, ALL lock (RUN only), operation mode lock (RUN only), lock except operation mode (RUN only), set lock (RUN only)]		
	Self-diagnostic function	EEPROM data check (Err), A/D converter action check (Err1), auto-tuning check (Err2), built-in watchdog timer.		
	Ramp function	Action	It sets the SV variance per minute when the SV is changed.	
		Setting range	Temperature input	0.0 to 999.9 (${ }^{\circ} \mathrm{C} / \mathrm{min}$.) (ramp function OFF at 0
			Analog input	0 to 9999 (digit/min.) (ramp function OFF at 0)
		Setting unit	Temperature input	$0.1{ }^{\circ} \mathrm{C} / \mathrm{min}$.
			Analog input	1 digit/min.
	Valve function	Motor stroke time	0.1 to 999.9 (sec.)	
		Motor drive dead band 0.0 to 100.0 (sec.) Password setting, blind screen temporary recall setting, set value back-up, set value initialization. This mode requires password. Make sure to take note of the password.		
	Default setting mode			
	Bank setting	Parameter can be set from SET 1 to 23 (max. 16-points)		
	Soft-start (primary control)	Output setting	MLL1 to MLH1 (\%)	
		Time setting	00:00 to 499.59 (min	sec.) Function OFF with 00:00 (min.: sec.) setti
	Programmed operation function	Max. 8-steps. Execution condition 3-kinds (step, soak 1 \& 2). Power failue guarantee function.		
	Bank automatic switching function	Max. 8-zones switching. Input type 3-kinds (SV, Ramp SV, PV)		

Option specifications

Option Specifications (Continued)

Remote SV Input Input Type (Current/Voltage Multi-Input) Measurement/Range of Setting Range of Display (Full Scale: Range
of FSLL2 to FSH2)

Resolution Display scaling Upper limit (FSH2)/Lower limit (FSL2) Display Resolution Performance | PV Correction Zero-Point Setting (PVS2) |
| :--- |
| PV Corection | PV Correction Gain Setting (PVG2) PV Input Filter (PDF2) Local/Remote Switch

0 to 1VDC, 0 to 5VDC, $1 \sim 5 \mathrm{VDC}, 0$ to 10VDC, 4 to 20 mADC -19999 to +29999 (decimal point can be set at any location) \begin{tabular}{l|l}
$\begin{array}{ll}0 \\
0 \\
0 \\
0 & \text { to 1 1 } 10 \mathrm{VDC},\end{array}$

\multirow{2}{*}{0 to 10 VDC} \& Low Limit: Maximum of -2% of full scale

\cline { 2 - 3 } \&
\end{tabular} 1 to 5VDC, 4 to 20mADC \quad High Limit: + 12\% of full scale Low Limit: -12% of full scale

$\pm 0.3 \%$ of full scale +1 digit

Upper limit (FSH2): FSL2 to SV setting range upper limit.
Lower limit (FSL2): SV setting range lower limit to FSH2 (digit)
20000 or less
-9999 to 9999 (digit)
0.500 to 2.000 (Multiple)
0.0 to 99.9 (seconds)

Local, remote 1 (scaling with SLL1 and SLH1)
Local, remote 1 (scaling with SLL1 and SL

Input and scale range

Thermocouple		Measurement/measurementrange	Indication resolution
K	${ }^{\circ} \mathrm{C}$	-200.0 to 1372.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
J	${ }^{\circ} \mathrm{C}$	-200.0 to 1200.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
T	${ }^{\circ} \mathrm{C}$	-200.0 to 400.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
E	${ }^{\circ} \mathrm{C}$	-200.0 to 1000.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
R	${ }^{\circ} \mathrm{C}$	-50.0 to 1768	$1^{\circ} \mathrm{C}$
S	${ }^{\circ} \mathrm{C}$	-50.0 to 1768	$1^{\circ} \mathrm{C}$
B	${ }^{\circ} \mathrm{C}$	-0.0 to 1800	$1^{\circ} \mathrm{C}$
N	${ }^{\circ} \mathrm{C}$	-200.0 to 1300.0	$1^{\circ} / 0.1^{\circ} \mathrm{C}$
U	${ }^{\circ} \mathrm{C}$	-200.0 to 400.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
L	${ }^{\circ} \mathrm{C}$	-200.0 to 900.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
WRe5-26	${ }^{\circ} \mathrm{C}$	0 to 2300	$1^{\circ} \mathrm{C}$
PR40-20	${ }^{\circ} \mathrm{C}$	0 to 1880	$1^{\circ} \mathrm{C}$
PLII	${ }^{\circ} \mathrm{C}$	0.0 to 1390.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$

RTD		Measurement/measurementrange	Indication resolution
Pt100 (JIS/IEC)	${ }^{\circ} \mathrm{C}$	-200.0 to 850.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$
$\mathrm{JPt100}(\mathrm{JIS})$	${ }^{\circ} \mathrm{C}$	-200.0 to 510.0	$1^{\circ} \mathrm{C} / 0.1^{\circ} \mathrm{C}$

Current and voltage	Measurement/measurement range	Indication resolution
0 to 1VDC	- 19999 to 29999 Indication width is less than 20000.	A decimal point position can be changed arbitrarily.
0 to 5VDC		
1 to 5VDC		
0 to 10VDC		
0 to 10 mVDC		
4 to 20 mADC		

Timer operation mode

Start mode

1	Auto start
2	Manual start
3	SV start
4	DI1 start
5	DI2 start
6	DI3 start
7	DI4 start
8	Event 1 start
9	Event 2 start
10	Event 3 start
11	Event 4 start
12	Event 5 start
13	Event 6 start
14	Event 7 start
15	Step start
16	Soak start

Output connection setting

Main output
Sub-output
Event output
RUN output
RDY output
Timer1 output
Timer1 output at on delay
Timer1 output at off delay
Timer1 output at on + off delay
Timer2 output
Timer2 output at on delay
Timer2 output at off delay
Timer2 output at on + off delay
Timer3 output
Timer3 output at on delay
Timer3 output at off delay
Timer3 output at on + off delay
Transmission output (When OUT1 and OUT2 are Analog output)
End output

Point of contact output mode

Function	
5	Without
i	Deflection upper and lower limit
2	Deflection upper limit
3	Deflection lower limit
4	Deflection range
5	Absolute value upper and lower limit
5	Absolute value upper limit
7	Absolute value lower limit
8	Absolute value range
	Additional function
0	Without
1	Retain
2	Standby sequence
3	Delay timer
4	Retain + Standby sequence
5	Retain + Delay timer
δ	Standby sequence + Delay timer
7	Retain+ Standby sequence + Delay timer
Control linkage function	
\bigcirc	All mode
1	RUN/MAN mode only
2	RUN mode only

Event function 2 (PV abnormal)

Function	
\boldsymbol{Z}	Without
i	With
Additional function	
\boldsymbol{Z}	Without
i	Retain
$己$	Delay timer
3	Retain + Delay timer
Control linkage function	
\boldsymbol{Z}	All mode
i	RUN/MAN mode only
Z	RUN mode only

Event function 3
(CT abnormal)

Function	
\bigcirc	Without
1	CT1 abnormal
2	CT2 abnormal
3	CT1 abnormal + CT2 abnormal
Additional function	
0	Without
1	Retain
2	Delay timer
3	Retain + Delay timer
Control linkage function	
0	All mode
i	RUN/MAN mode only
2	RUN mode only

Event function 4
(Loop wire break)

Function	
\boldsymbol{O}	Without
I	With
Additional function	
\boldsymbol{O}	Without
I	Retain

* Each Start has ON delay/OFF Delay

ON delay: After time-up control stop or event output OFF OFF delay: After time-up control stop or event output ON

Output functional allotment (\bigcirc : Allotment is possible, \times : Impossible)

| Output types | Control output | | Auxiliary output | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Output1 | Output2 | Output3 | Output4 | Output5 | Output6 | Output7 |
| Main output (Heating) | \bigcirc |
| Auxiliary output (Cooling) | \bigcirc |
| Transmission | \bigcirc | \bigcirc | \times | \times | \times | \times | \times |
| Event output | \bigcirc |
| RUN, READY output | \bigcirc |
| Timer output | \bigcirc |
| End output | \bigcirc |

The function allotment setting is possible for each output.
Example) When the output 1, 2 is RR model (relay output is 2-points). By setting, they can be switched to "2-point Control Output) or "1-point Control Output, 1-point Event Output".

Wiring

※Please use less than 6 mm width terminal

TTM-214

	Relay utput	Open Collecto Output		
No	7	+	7	
NO	8	+	8	8
C	9	-		

※ Output 3 and 4 (Terminals 7 to 9) are possible to select from either relay output or open collector.
TTM-215, 219

※ Output 3 to 7 (Terminals 19 to 21 and 7 to 12) are possible to select from either relay output or open collector.

TTM-217

※ Output 3 to 5 and 7 (Terminals 11 to 13,7 to 8,23 to 24) are possible to select from either relay output or open collector.

Terminal explanation

Communication	Please connect A \& B terminals correctly. (Please use a converter when it is not RS-485)	
Output	Relay contact point	C: Common, No: Normal open
	SSR drive	Please connect directly to INPUT + \& - at SSR side.
	Transmission, Open collector	Take note of polarities + \& - when making connections.
	Please connect a specified current transformer directly. (CTL-6-P-H)	
PV input/ Al input	Thermocouple Current/ voltage	Take note of polarities + \& - when making connections.
	RTD	Take note of the terminals A, B \& b when making connections.
DI	COM: Common (The polarity can be switched)	
Al input	Take note of polarities + \& - when making connections.	
Power	In case of 24VDC, the polarity assignment shall be terminal no. (1): (+), terminal no. 2): (-)	

Dimensions

$\left.$| Model | a | b | c | d | A | B | C | D | L | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TTM-214 | 45 | +0.6
 -0 | 45 | +0.6
 -0 | 60 | 48 | 48 | 48 | 2.5 | 59.7 | $($ Bxn-3) | | +0.6 |
| :---: |
| -0 | \right\rvert\,

Panel Installation

* How to remove the attachment

Insert the tip of the flat head screwdriver between the controller body and the clip of the attachment, then rotate the screwdriver to suspend the clip, and remove the attachment.

TTM-215, 217, 219

Advanced Features

PPID control by new algorithm

(100ㅇN NEW PID

BLIND Function Setting

- Transition to blind setting mode

Content of the above items marked with \star

1. In the blind mode, "on" or "off" will appear below each character (SV indication portion).
2. The change of characters in the blind mode is done by pressing the "FUNC" key.
3. To end the blind setting mode, turn OFF the power first.

By the key operation, screen of your choice will not appear.
Please note that when the SV setting screen is made not to appear also, only the PV will appear during the normal indication mode.

Auto (RUN) / Manual function

The auto control and the manual control, they can be switched by the front key
Manual operation is the function that is not concerned with the situation of a deviation, but can set up and output the output for control arbitrarily (manipulation variable).

The system can be operated manually in the time of the system trial run and so on, when to check of final control element (a valve, heater, etc.) of operation is performed, when the sensor breaks down by any chance, or when usual control can't be done.

There is the Balance-less Bump-less function, which holds down sudden change of control output when switching the automatic control and manual control mutually. Furthermore, it stops damage on the peripheral equipment by sudden change and the bad influence to a control system. So, you can operate in comfort.

Balance-less Bump-less

Timer function

1. In the case of bread baking oven

Put dough in the oven, and push the start key to the timer.
The temperature is controlled by the heater and so on for the timer setup time.

- After timer count end control is stopped automatically (It is used when making control STOP after the timer count ends.)

2. In case of packing machine and industrial machine, which control is started after the completing the preparation of the peripheral device
The count of the timer begins from point that turns on the power supply.
The control output stops during timer setting time
-The control starts automatically after the timer count ends.
(It is used when making control starts after the timer count ends.)

Communication function

- A connection example with the personal computer Centralized supervision with the personal computer is possible with the connection like the chart below.

- Loader communication

Host computer

※Loader cable specification
[Appearance and structure]

[Standard and performance]

USB I/F standard	USB Specification 2.0 Conforming
DTE (Personal computer side) speed	Up to 38400bps
Connector specification	Personal computer side: USB
	Temperature Controller side : 2.5mm Stereo plug

[Model]

TTM-LOADER

Digital PV filter

It is the function to realize the CR filter effect on the software by performing primary delay operation to the measured value (PV).
The effect of the filter can be set by the time constant.
(Time constant is the time that the PV value reaches up to about 63% when the input changes on the step.)

$\begin{aligned} & \qquad 100 \% \\ & \text { Input signal } \end{aligned}$		
		Time
	0\%	
Reading input No Digital PV filter	100\%	
Time constant (t) $=0$	0\%	Time
Reading input With Digital PV filter	$\begin{array}{r} 100 \% \\ 63 \% \end{array}$	
Time constant (t) >0	0\%	Time

The use of Digital PV filter

1) Removal of high frequency noise --- The influence of a noise when an electric noise joining an input is mitigated.
2) A response can be delayed against the sudden change of the input.

OSelf-tuning PID

OBank function

TTM-210 series has a bank function which stores up to 16 types of selected parameters in each of 8 banks.
Different temperature control with one unit can be realized with the presetting of the corresponding parameters in each bank and by simply switching the bank through key operation, DI , or communication without changing the temperature setting and the PID values each time.

ORamp function

It is a function to give PV value an inclination against the changes of SV value. In the actual action, the "dummy" set value is made to change gradually, and the control is done against the "dummy" set value.
The variation per minute of SV is set.
The effect of the ramp function is best exercised when sudden changes of control result is not acceptable due to the characteristics of physical object to be controlled, or, when the changing process (inclination) of the control result of the physical object becomes important.
Please note that this function changes only the SV, therefore, if great effect is expected on the PV, the expected result may not be obtained.

-OFF point position movement of ON/OFF control

When the OFF point position movement is set to 0 , the OFF point is the set value position.

Above is when the OFF point position shift is set at (+5). The actual set value does not vary with above figures, but the position, as ON/OFF, moves (+5) towards the upper side. When the position is moved towards the minus side, the OFF point will move in reverse direction to the positions indicated above.

Bank auto-switching function

- It is a function in which the bank automatically switches by PV / SV

By setting the desired value to each bank, an optimized parameter can be created in each temperature range
Example) PID values during the PID control can be set differently in each bank.

Simultaneous temperature rise function

■Simultaneous temperature rise

- When simultaneous temperature rise control is exerted by multi-channels using the RS-485 communication function, a master and slave are determined beforehand. This permits reaching the respective goal values at the same time regardless of the characteristic of each channel.
The channel, in which the time from the start of control to the reach to the goal value is the longest, is specified as a master. The other channels are specified as slaves.
- The simultaneous temperature rise function is started at the start of run (including the power ON time) or a change of setting value, and is ended when the master reaches the goal value.

- How to use

1. Perform communication protocol settings to the TOHO protocol.
2. In the communication changeover setting, set the channel, in which the temperature reaches the goal value latest, to the simultaneous temperature rise master, and then set the other channels to the simultaneous temperature rise slaves.
3. Set the main control sensitivity.

During a simultaneous temperature rise, the slave side exerts ON/OFF control for the current temperature of the master. Accordingly, set the sensitivity to a level that does not cause chattering.

Note: Precautions on use

1. Perform auto tuning for each channel as required.
2. When using the simultaneous temperature rise function, do not perform communication with the outside.

OHeating / Cooling

By allotting main output and secondary output to 2 output points respectively, heating and cooling control would be possible.
With the DB (Dead Band) setting, a range can be set between the heating output and the cooling output.

OPosition proportional control

- Position proportional control

- According to the operation amount required for PID control, the valve opening is changed by outputting an open signal or close signal to the valve on the basis of the valve motor stroke time, so that the flow rate is adjusted, thereby controlling the target temperature. The control can be exerted without feedback resistance.
- The valve motor stroke time means the time from the full opening of the valve till its full closing.

- Valve motor drive dead band

In position proportional control, the open signal or close signal is output so that the operation amount of the regulator may agree with the opening of the valve.
It is necessary to refrain from performing an open/close changeover operation frequently in consideration of the service life of the valve.
A dead band is provided at the open signal/close signal output changeover point.
In this area, both open signal output and close signal output are stopped to reduce frequent open/close changeover operations.

- Initial opening after the end of AT

It is possible to set the operation amount just after the end of auto tuning in order to restrict undershoot just after this end.
Example) Response after the end of AT

Remote SV

Signals from external sources become the controller parameters.

- Cascade control using remote SV

Cascade control is where the control signal for a single controller is applied to other controllers, and the controller that receives control signals from an external source convert those signals into parameters for control purposes.
As shown in the illustration above, cascade control can be achieved with the use of two controllers.

OSIMPLIFIED PROGRAM CONTROL FUNCTION

- Programmed operation with maximum of 8-steps available.
- It's possible to set Time Signal output and End Signal output.
- Maximum of 16 parameters, such as PID, can be changed at the respective steps since it
is possible to switch the bank at the respective steps.
- With compensatory function for power failure

Operation Example)


```
# RMP : Ramp function setting
        SLH : Upper limit setting for SV limiter
        SLL : Lower limit setting for SV limiter
        PID : PID constants setting
        MFI: ON function setting
```



```
        oft1: OFF delay time for timer1
```


STEP TIME

It's possible to select from step time, soak time 1 , soak time 2.
Step time: Time of the entire steps
Soak time 1: Time after SV has reached
Soak time 2: Stability time

TIME SIGNAL OUTPUT

Time Signal output is possible by using another timer which is different from the simplified program control

Configuration Sample)

REPEAT OPERATION

It is possible to repeat the operation. Not only full repeat but also partial one are available by setting.

Operation Example)

OTHERS

Pause and step advance operation can be done by the key operation, the FUNC key and DI.

Ordering Information (Model Configurations)

4,

(1)	Model		4	48×48			
			5	96×48	* Scheduled to start sales in December 2020		
			7	72×72			
			9	96×96			
(2)	Output 1		N	No		J	Voltage 0 to 5VDC
			R	Relay point of contact		F	Voltage 1 to 5VDC
			P	Voltage for SSR driving		G	Voltage 0 to 10VDC
			A	Open collector		1	Current 4 to 20mADC
			K	Voltage 0 to 1VDC		H	Voltage 0 to 10 mVDC
(3)	Output 2		N	No		J	Voltage 0 to 5VDC
			R	Relay point of contact		F	Voltage 1 to 5VDC
			P	Voltage for SSR driving		G	Voltage 0 to 10VDC
			A	Open collector		1	Current 4 to 20mADC
			K	Voltage 0 to 1VDC		H	Voltage 0 to 10 mVDC
(4)	Output 3, 4		A	Open collector	Same for the remote controllers on all models		
			R	Relay point of contact			
(5)	Output 5, 6		A	Open collector	Not selectable for 214 217 cannot select output 6		
			R	Relay point of contact			
(6)	Output 7		A	Open collector	Not selectable for 214 Not selectable under TTM-217 when option W (DI3) is reauired.		
			R	Relay point of contact			
(7)	Al input		Y	Remote SV input (voltage/current only) Not selectable for TTM-214			
(8)	Option	214 Selection	ST	CT1, 2			
			SV	CT1, DI2			
			UV	DI1, 2			
		217 Selection	ST	CT1, 2			
			SV	CT1, DI2			
			UV	DI1, 2			
			STW	CT1, 2 DI3 (output 7 not selectable)			
			SVW	CT1, DI2, 3 (output 7 not selectable)			
			UVW	DI1, 2, 3 (output 7 not selectable)			
		215, 219 Selection	ST	CT1, 2			
			SV	CT1, DI2			
			UV	DI1, 2			
			SVW	CT1, DI2, 3, 4			
			UVW	DI1, 2, 3, 4			
			STUV	CT1, 2 DI1, 2			
			STUVW	CT1,2 DI1, 2, 3, 4			
(9)	Communication		M	Communications (RS-485)			
(10)	Power Supply			100 to 240 V (free power)			
			L	24VAC/DC			

* Parameters up to output 2 must be selected.
*Specifications apply in accordance with the sequence of selection for output 3 and upwards.
Example: TTM-219-PR-RUVW
P: Output 1: SSR drive voltage
R: Output 2: Relay connection
R: Output 3, 4: Relay connection (does not select output 5 and 6)
UVW: DI1, 2, 3, 4
\star Output 3 and 4 must be selected when output 5 and 6 are required.
\star Output 3 and 4 and output 5 and 6 must be selected when output 7 is required.
* Option W only consists of DI3 when TTM-217 has been selected.
(The option W under 215, 219 selection refers to DI3, 4.)
* CTL-6-P-H is added when CT is selected. (2pcs are added when 2 CTs are selected.)
* CT cannot be selected when only analog has been selected for the output.

