

DIGITAL TEMPERATURE CONTROLLER

Tim：000W

Most Superior Controller with Advanced Multiple Functions！
Low Price，Easy Operation \＆Selectable Input！！

TTM－006W

тм－007w

TOHO ELECTRONICS INC．

FEATURES

- Self-Tuning PID (Heating / Cooling)

The most appropriate PID constant is automatically computed for the controlled objects. PID constant is computed by performing the tuning, or when the hunting occurs.

- Blind Function

From the various existing parameters, only the required parameters can be indicated or set.

Simplified Timer Function

ON/OFF setting control is available after some certain interval. Function of ON/ OFF alarm output is independently usable.

- Priority Display

Demanding parameter screens are monitored and set up under operational mode screen. (max. 9 points)

Multiple Inputs

Thermocouple / R.T.D. (Pt100 \& JPt100) are selectable by front key.

- External Standard

Conforms to "UL", "cUL" and "CE" markings (except TTM-002W) and compliant to "IP66"equivalent.
The 6 substances restricted by the RoHS directives are not used.
Compact Size
Compactly made with the depth of only 77 mm (002 W is 95 mm).
Manual Control (Balanceless \& Bumpless)
Manual output function is applicable for versatile applications of instrumentation systems.
Sampling Cycle: 250 ms

Communication Function (RS-485: TOHO Protocol / MODBUS) The communication distance is extended up to 500 m , and max. of 31 units of controllers can be connected to a single computer at a time. Centralized supervision is available for collectiion of the whole data and alterration of setting values at remote location.

Digital PV Filter

A filtering is possible with a software for abrupt alteration of input value.
PID with Overshoot Control Function
A PID control is available to control the overshoot which occurs when the control is just starting.
Further, in order to improve the controllability, PID algorithm of TTM- 200 series had been introduced.

D Function

The following functions are switchable:
(1) SV / SV2
(2) RUN / READY
(3) AUTO (RUN) / Manual
(4) Normal / Reverse Action
(5) AT (Auto-Tuning) Start
(6) Normal (SV2) / Reverse Action (SV)
(7) TIMER Start / Reset

Others

(1) CT Input (w/ Input Monitor)
(2) Shift setting of OFF position during the ON / OFF control (for both Output $1 \& 2$).
(3) Heating / Cooling Control (w/ PID Control Function on Cooling Side).
(4) Ramp Function

FRONT PANEL

TTM-004W

AL1	Output monitor for contact output 1
AL2	Output monitor for contact output 2
OUT1	Output monitor for output 1
OUT2	Output monitor for output 2
RDY	Light up in "READY" condition
COM	Light up when the communication function (option) is working (It blinks during the communication)
MODE	Mode key for shifting display
DI	Light up when DI (option) is functioning
FUNC	This key executes the set functions. (1) Digit shifting key (digit being selected will blink) (2) AT key (3) RUN / READY key (4) TIMER Start / Reset
PV	Indication of measured value \& character display (Alarm, PID, etc.)
SV	Indication of set value, manipulation volume, timer remaining time
$\frac{\Delta}{\nabla}$	Up / Down key for alteration of the set values - Press continuously for 1 sec . to 10 sec . : 1 digit / 100 ms . 10 sec . to 20 sec . : 10 digits / 100 ms . over 20 sec . : 100 digits $/ 100 \mathrm{~ms}$.

OPERATION FLOW

STANDARD SPECIFICATIONS

Input Type	Thermocouple	K, J, T, R, N, S, B (Input Resistance: 1M Ω)			Thermocouple / R.T.D. Input, Current / Voltage Input are switchable with the front key.
	R.T.D.	Pt100, JPt100 (provided that the external resistance is below 10Ω (per wire) and 3 wires have all the same resistance)			
	Current / Voltage	4-20mADC (Input Resistance 250 Ω), 0-5 VDC / 1-5 VDC (Input Resistance above 500k Ω) (Measured Current Appx. 2mA)			
Indication	PV Character	4-digits White 10 mm height (7.6 mm height for TTM-002W, 14mm height for TTM-006W / 009W)			
	SV Set Value	4-digist Green 8mm height (5.25 mm height for TTM-002W)			
	Various Function	LED: Red (AL1, AL2, OUT1, OUT2, RDY), LED: Green (COM, DI), COM for TTM-002W is at 1st decimal digit of display.			
Control Method	PID Auto-Tuning Self-Tuning	Proportional band (P1)	0.1 to 200.0% of the setting limiter span		
		Proportional band (P2) at Output 2 side.	0.10 to 10.00 times (magnification over the proportional band P1)		
		Integral Time (I)	0 to 3600 sec . (Integral Control Action becomes OFF at 0).		
		Derivative Time (D)	0 to 3600 sec . (Derivative Action becomes OFF at 0).		
		Proportional Cycle (T1, T2)	1 to 120 sec .		
		Dead Band (DB)	Temp. Input	-100.0 to +100.0 or -100 to $+100\left({ }^{\circ} \mathrm{C}\right)$	
			Analogue Input	-1000 to 1000 (digit) (Decimal point is at designated place)	
	ON / OFF	Control Sensitivity (C1, C2)	Temp. Input	0 to 999 or 0.0 to $999.9\left({ }^{\circ} \mathrm{C}\right.$)	
			Analogue Input	0 to 9999 (digit) (Decimal point is at designated place)	
	OFF point of Output 1 \& 2	Position Setting	Temp. Input	-199 to 999 or -199.9 to $999.9\left({ }^{\circ} \mathrm{C}\right.$)	
			Analogue Input	-1999 to 9999 (digit) (Decimal point is at designated place)	
Control Output	Relay Contact	250VAC, 3A (Resistance Load) 1a contact (On heating / cooling operation, output 2 is 250VAC, 2.4 A (Load Resistance) 1a contact)			
	SSR Drive Voltage	0 to 12VDC (Load Resistance: 600Ω or more)			
	Current	4 to 20 mADC (Load Resistance: Below 600Ω)			
Sampling Time		0.25 sec . (Output change cycle is also the same)			
Setting and Indication Accuracy	Thermocouple	$\pm\left(0.3 \%+1\right.$-digit) of input value or $\pm 2^{\circ} \mathrm{C}$, whichever is bigger (Ambient Temp.: $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$) However -99 to $0^{\circ} \mathrm{C}: \pm 3^{\circ} \mathrm{C}-210$ to $-100^{\circ} \mathrm{C}: \pm 4^{\circ} \mathrm{C}$ Thermocouple B under $400^{\circ} \mathrm{C}$ is not regulated.			
	R.T.D.	$\pm\left(0.3 \%+1\right.$-digit) of input value or $\pm 0.9^{\circ} \mathrm{C}$, whichever is bigger (Ambient Temp.: $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)			
	Current ($4-20 \mathrm{~mA}$), Voltage (0-5VDC, 1 - 5VDC)	$\pm\left(0.3 \%+1\right.$-digit) of setting value limiter span (Ambient Temp.: $23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$)			
Memory Element		EEPROM			
Input Voltage		100-240VAC (-15\%, $+10 \%$) or 24V AC/DC ($\pm 10 \%$) 50/60Hz * For transfer output models, 24 V AC/DC is not selectable.			
Weight		TTM-002W / 004W: below 180gms., TTM-005W / 006W: below 300gms., TTM-007W: below 250 gms ., TTM-009W: below 380 gms .			
Power Consumption		10VA (264VAC), 6VA (24VAC), 4W (24VDC)			
Accessories		Instruction Manual \& mounting attachment (TTM-002W, 004W), metal mounting bracket (TTM-005W, 006W, 007W, 009W)			
Suitable Operating Environment		0 to $50^{\circ} \mathrm{C}, 20$ to $90 \% \mathrm{RH}$ (no condensation)			
Suitable Storage Environment		$-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, 5$ to $95 \% \mathrm{RH}$ (no icing and condensation)			
Functions	Manipulated Variable Limiter (ML1, MH1, ML2, MH2)	$0.0(-10.0)$ to 100.0 (110.0)\% Values indicated in () are for current / voltage models.			
	Set Limiter (SLL, SLH)	See "Input \& Scale Range Table".			
	Selectable Control Mode(CNT)	Auto-Tuning PID Type A (Normal / Reverse Action), Auto-Tuning PID Type B (Normal / Reverse Action), Self-Tuning PID (Normal / Reverse Action), ON / OFF (Normal / Reverse Action)			
	PV Correction 0-point Setting (PVS)	Thermocouple / R.T.D.: - 199 to 999 or -199.9 to 999.9 (${ }^{\circ} \mathrm{C}$) Current / Voltage (Decimal point at designated position): -1999 to 9999 (digit)			
	PV Correction Gain Setting	0.50 to 2.00 (times)			
	Input Filter	0.0 to 99.9 (sec.)			
	Manual Reset (PBB)	0.0 to $100.0 \%,-100.0$ to +100.0 (heating / cooling) of proportional band.			
	Timer Operation Mode (TMM)	0 min .00 sec . to 59 min .59 sec .0 hr . 00 min . to 99 hrs .59 min . Accuracy: \pm ($1.5 \%+0.5 \mathrm{sec}$.) of the set time.			
	Decimal Point Shift (DP)	Indication after the decimal point Yes / No			
	Manual Control	Manual control is possible (Balanceless / Bumpless)			
	RUN / READY	RUN / READY is switchable			
	Blind Function	A non-indication is possible for any unnecessary parameter screen.			
	Auto-Tuning (AT) Coefficient	A coefficient can be set to the proportional band which is computed by the Auto-Tuning.			
	FUNC Key	Selectable from "Digit Shift", "AT", "RUN / READY", "Timer Start / Reset".			
	Priority Display	Selected parameter screen can be displayed in the operation mode (9-points)			
	Lock Function (LOC)	4-modes (OFF, ALL, Operation Mode Lock, Lock except Operation Mode)			
	Self-Checking Function	EEPROM Data Check (ErrO), A/D Converter Operation Check (Err1), Auto-Tuning Check (Err2), Built-In Watchdog Timer			
	Ramp Function				
External Standard	6 substances as restricted by the RoHS Directives are not used.	Lead: Below 1,000 ppm Mercury: Below $1,000 \mathrm{ppm}$ Cadmium: Below 100 ppm Hexad Chrome: Below 1,000 ppm Polybrominated Biphenyl (PBB): Below 1,000 ppm Polybrominated Diphenyl Ethers (PBDE): Below 1,000 ppm			
	UL/CUL/CE Markings (except TTM-002W)				

ADDITIONAL FUNCTIONS (Option)

Contact Output 1 (AL 1) Contact Output 2 (AL2 or OUT2)	
DI	Function: SV / SV2 switchable (OFF: SV2), Auto / Manual switchable (OFF: Manual), RUN / READY switchable (OFF: READY), Normal / Reverse action switchable (OFF: Normal), Normal action (SV2) / Reverse action (SV2) switchable (OFF: Normal SV2), Timer Start / Reset (OFF: counting) Input Specifications: Min. input time: 500 mS , OFF voltage: 6 VDC max., ON current: 6 mA max., permissible resistance value between terminals: $\mathrm{ON}=333 \Omega$ max., $\mathrm{OFF}=500 \mathrm{k} \Omega \mathrm{min}$.
CT Input	Setting Range: 1 to 30A AC, Accuracy: $\pm 5 \%$ (setting resolution 1A) of FS, Detection of wire malfunction: when the ON time of OUT1 is above 300 ms . Welding detection: when the OFF time of OUT1 is above 300 mS .
Heating \& Cooling	Refer to "Use of Control Output"
Communication	
Transfer Output	FUNCTION: PV (Measured Value) Output, SV (Set Value) Output, MV (OUT1 Manipulated Variable) Output Output Accuracy FS $\pm 0.3 \%$ (ambient temp. $23 \pm 10^{\circ} \mathrm{C}$) 0 to $10 \mathrm{mV} \mathrm{DC}, 0$ to $1 \mathrm{~V}, 0$ to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 0$ to $10 \mathrm{~V}, 4$ to 20 mA Normal / Reverse switchable

INPUT and SCALE RANGE

(Thermocouples \& R.T.D. are switchable freely)

Thermocouple	Set Range	Display Range			
		No decimal point	w/ decimal point	No decimal point	w/decimal point
K	${ }^{\circ} \mathrm{C}$	-200 to 1372	-199.9 to 990.0	-210 to 1382	-199.9 to 999.9
J	${ }^{\circ} \mathrm{C}$	-200 to 850	-199.9 to 850.0	-210 to 860	-199.9 to 860.0
R	${ }^{\circ} \mathrm{C}$	0 to 1700	-	-10 to 1710	-
T	${ }^{\circ} \mathrm{C}$	-200 to 400	-199.9 to 400.0	-210 to 410	-199.9 to 410.0
N	${ }^{\circ} \mathrm{C}$	-200 to 1300	-199.9 to 990.0	-210 to 1310	-199.9 to 999.9
S	${ }^{\circ} \mathrm{C}$	0 to 1700	-	-10 to 1710	-
B	${ }^{\circ} \mathrm{C}$	0 to 1800	-	-20 to 1820	-

R.T.D.	Set Range		Display Range		
		No decimal point	w/ decimal point	No decimal point	w/ decimal point
Pt100 (JS/IEC)	${ }^{\circ} \mathrm{C}$	-199 to 500	-199.9 to 500.0	-199 to 530	-199.9 to 520.0
JPt100 (JIS)	${ }^{\circ} \mathrm{C}$	-199 to 500	-199.9 to 500.0	-199 to 510	-199.9 to 520.0

Current / Voltage		Set Range		Display Range
		No decimal point	w/ decimal point	
0 to 5 V	V	-1999 to 9999	-199.9 to 999.0	Appx. -2\% of SV low limit setting (SLL) to appx. +12\% of SV high limit setting (SLH) within the set range.
			-19.99 to 99.99	
			-1.999 to 9.999	
1 to 5V	V	-1999 to 9999	-199.9 to 999.0	Appx. - 12% of SV low limit setting (SLL) to appx. $+12 \%$ of SV high limit setting (SLH) within the set range.
			-19.99 to 99.99	
			-1.999 to 9.999	
4 to 20 mA	mA	-1999 to 9999	-199.9 to 999.0	Appx. -12\% of SV low limit setting (SLL) to appx. $+12 \%$ of SV high limit setting (SLH) within the set range.
			-19.99 to 99.99	
			-1.999 to 9.999	

CONTACT OUPUT MODE

Kinds of Specialized Functions

0	None
\mathbf{i}	PV Abnormal Contact Output
$己$	Heater Abnormal Contact Output
$\mathbf{3}$	PV Abnormal Contact Output + Heater Abnormal Contact Output

0.1 only when there is no CT input.

Additional Functions

0	None
i	Contact Output Hold
$己$	Standby Sequence
3	Contact Output Hold + Standby Sequence

0.1 only the kinds of specialized functions are 0 .

Kinds of PV Event Function

0	None
1	Deviation Upper / Lower Limit Contact Output
2	Deviation Upper Limit Contact Output
3	Deviation Lower Limit Contact Output
4	Deviation Upper / Lower Limit Range Contact Output
5	Absolute Value Upper / Lower Limit Contact Output
5	Absolute Value Upper Limit Contact Output
7	Absolute Value Lower Limit Contact Output
8	Absolute Value Upper / Lower Limit Range Contact Output

WIRING

TTM-002W when makig DI with open collector output, terminal \#11 is "+ (plus)".

TTM-004W when makig DI with open collector output, terminal \#9 is "+ (plus)".

TTM-005W/006W/009W when makig DI with open collector output, terminal \#11 is "+ (plus)".

TTM-007W when makig Dl with open collector output, terminal \#8 is "+ (plus)".

$* 2$ EV2 when Options B or P is selected
$* 3$ RTD: Resistance Temperature Detector Input
TC Thermocuplel
TC: Thermocouple Input
$\mathrm{V}:$ Voltage Input
I:Current Input

TERMINALS

Communication	Connect correctly the terminal of T/R (A) and T/R (B). (Use converter for connection other than RS-485)
Relay Output	C: Common, NO: Normal Open
SSR Drive Output	Connect directly to + \& - input of SSR
EV1,2	The polarity of normal open \& normal close is switchable.
CT	Connect designated current transformer (heater abnormal contact output detector) directly.
R.T.D. Input	Connect carefully to terminals A, B, b.
Ther m o couple Input	Watch for the polarity + \& - when making connection.

*When OUT2 is "P", connect directly to INPUT + \& - at SSR side.
*Watch for the polarity of transfer output $+\&-$ when making connection.

TIMER OPERATION MODE

Start Mode

i	Auto-Start	$:($ ON Delay)
2	Manual Start :(ON Delay)	
3	Event Star	$:($ ON Delay)
4	Auto-Start	:(OFF Delay)
5	Manual Start :(OFF Delay)	
5	Event Start	$:($ OFF Delay)
7	SV Start	:(OFF Delay)

OFF Delay: After the time's up, either the control stops or the event output becomes OFF. ON Delay: After the time's up, either the control starts or the event output becomes ON. *Output is selectable either main control output or event output

TIMER OUTPUT SETTING

1	Timer Disuse
$己$	Control Output
3	Event 1 Output

DIMENSIONS

- External Dimension \& Panel Cutout Dimension

Model	a	b	c	d	A	B	C	D	L
TTM-002W	$22.2_{-0}^{+0.3}$	$45_{-0}^{+0.6}$	60	48	24	48	3.5	96.5	$(\mathrm{~B} \times \mathrm{N}-2.5)_{-0}^{+0.6}$
TTM-004W	$45_{-0}^{+0.6}$	$45_{-0}^{+0.6}$	60	48	48	48	6	77	$(\mathrm{~B} \times \mathrm{N}-3)_{-0}^{+0.6}$
TTM-005W	$92_{-0}^{+0.6}$	$45_{-0}^{+0.6}$	120	48	96	48	6.5	76.5	$(\mathrm{~B} \times \mathrm{N}-3)_{-0}^{+1}$
TTM-006W	$45_{-0}^{+0.6}$	$92_{-0}^{+0.6}$	48	120	48	96	6.5	76.5	$(\mathrm{~A} \times \mathrm{N}-3)_{-0}^{+1}$
TTM-007W	$68_{-0}^{+0.6}$	$68_{-0}^{+0.6}$	90	72	72	72	8.5	77	$(\mathrm{~B} \times \mathrm{N}-3)_{-0}^{+1}$
TTM-009W	$92_{-0}^{+0.6}$	$92_{-0}^{+0.6}$	120	96	96	96	9	77	$(\mathrm{~B} \times \mathrm{N}-3)_{0}^{+1}$

※ When attaching several units, kindly refer to "L" column in the above table.
※ When the crimped terminal will be used to attach several units, make sure the terminals will not touch each other.
※ TTM-006W cannot be connected in crosswise direction. The "L" column above applies to vertical attachment dimensions.

PANEL INSTALLATION

[^0]
- Self-Tuning PID

Temp. (2) Hunting/Disturbance

Blind Function

- Mode Display Blind Setting

- Parameter Display Blind Setting

The screen of your choice can be made not to appear (blinded) by the key operation. However, please note that when the SV setting value screen is blinded, the SV will not show, only the Measured Value (PV) will be shown during the normal indication.

- Timer Function

1. In the case of Bread Oven

Place the dough in to the oven, and press the start key of the timer.
While the set time of the timer is in effect, the temperature will be controlled by the heaters, etc.
When the timer count ends, the control will stop automatically.
(The function is used to stop the control when the timer count ends)

2. In case the control needs to start after the peripheral equipment are readied for the packaging machines and industrial machines
The timer starts to count the moment the power is turned ON.
While the set time of the timer is in effect, the control output is put on hold.
When the timer count ends, the control starts automatically.
(The function is used to start the control when the timer count ends)

Communication Function

Example of connection with the Personal Computer By the connection as shown below, centralized monitoring would be possible with the use of PC.

Digital PV Filter

This is a function to realize the CR Filter Effect with software by means of primary delay operation on the measured value (PV). The Filter Effect can be set by time constant (t). (The time constant refers to a time the PV value reaches to appx. 63% when the input changes in a step-wise)

Use of Digital PV Filter

1) Removal of High-Frequency Noise: The effect of the noise is lessened when the electrical noise is added during the input process.
2) The response can be delayed in the event of abrupt input change.

PID with Overshoot Suppressive Function

TYPE B PID
(Over-Shoot Protection)

TYPE A PID
(Former PID)

- AUTO (RUN) / MANUAL CONTROL

The AUTO \& Manual Control can be switched with the front key, DI or by the communication. Manual operation is a function which enables the setting / generation of output of the control output (manipulated variable) at will regardless of the deviation condition.
The system can be operated manually when there is a need to make a validation of the final control element such as valves or heaters during the sytem test run, or when normal control cannot be done due to faulty sensors.
When switching over the AUTO / Manual reciprocally, sudden changes in the control output is suppressed. Furthermore, the Balanceless / Bumpless functions are available to hold the damages to peripheral devices due to sudden changes or harmful effect to the control system so the control can be done at ease.

Ramp Function

When SV (Set Value) is changed, this function provides a slope to its changes.
The actual action is performed in such a way that dummy SV is gradually changed towards the new set value, and the control is performed over the dummy set value.
A variation of SV per minute is set.
When the characteristics of the item to be controlled does not allow a sudden change of the control result, or when the change rate (slope) of the control result is important, the ramp function becomes very effective.
However, since this funcion changes only the SV, if great effect is expected on PV (measured value), expected result may not be obtained.

$$
\begin{aligned}
& \text { SV2 SV } \\
& \text { Start-up } \\
& \text { * When the SV2 option is selected, the above is possible to operate. }
\end{aligned}
$$

When the OFF-Point Position Shifting value is set to 0 , the OFF-Point is at the set value position.

Controlled Temperature ($[:=15$)

Above diagram shows the case the OFF-Point Position Shifting is set at (+5).
The actual set value does not have changes with above, but as ON / OFF position, it moved to upper side by $(+5)$. When position is moved to minus side, the OFF-Point moves in opposite direction to above diagram.

- Heating / Cooling (Low Cost Type)

Heating Cooling

${ }^{\circ} \mathrm{C}$

OFF-Point Position Shifting of ON / OFF Control

ORDERING INFORMATION (Model Configuration)

Model	002W	$24 \times 48 \mathrm{~mm}$							
	004W	$48 \times 48 \mathrm{~mm}$							
	005W	$96 \times 48 \mathrm{~mm}$							
	006W	$48 \times 96 \mathrm{~mm}$							
	007W	$72 \times 72 \mathrm{~mm}$							
	009W	$96 \times 96 \mathrm{~mm}$							
Input		Thermocouple (K, J, R, T, N, S, B), R.T.D. (Pt100, JPt100)							
		20 to $5 \mathrm{~V}, 1$ to $5 \mathrm{~V}, 4$ to 20 mA							
Output 1		R \quad Relay Contact							
			P	SSR Drive Voltage					
			1	Current 4 to 20mA DC					
Option				B	Out2 / EV2 Contact Output Relay			Select one	
				P	Out2 / EV2 SSR Drive Voltage Output				
				R	EV2 Contact Output Relay Not selectable with 002W / 004W. Not selectable when "DI" is selected. Not selectable when Out2 is not selected.				
				D	CT Input Not selectable when "I" of Output 1 is selected. Not selectable with 002W / 004W when DI is selected.				
				E	DI \quad Not selectable when option "R" is selected. Not selectable with $002 \mathrm{~W} / 004 \mathrm{~W}$ when "CT" is selected.				
				X	Communication	RS-485 (TOHO Protocol / MODBUS)			
				H	Transfer Output	0 to 10mV DC	A multiple choise is not possible. Not selectable with 002W / 004W / 007W.		
				K		0 to 1VDC			
				J		0 to 5VDC			
				F		1 to 5VDC			
				G		0 to 10VDC			
				1		4 to 20 mA DC			
				-24	Power Source AC / DC 24V (Blank if 100 to 240VAC) Not selectable when Transfer Output is selected.				

TTM-007W

TTM-009W

W $24 \times 48 \mathrm{~mm}$ TTM-0 TTM-006W $48 \times 96 \mathrm{~mm}$ TTM-009W $96 \times 96 \mathrm{~mm}$

[^0]: In the case of wiring a unit with options, and when connecting the wires to the center terminals, please connect wires directly to the terminal as much as possible. If crimped terminals are used, make sure they don't touch other terminals.

